D-R185 697 TIMING VARIATION IN DUAL LOOP BENCHNARKSCU) i1
MGIE MELLON UNIV PITTSBURGH PR SOFTIIHRE ENGINEERINB
N ALTHAN ET AL. OCT 87 CMU/SEI-87-T
UNCLASSIFIED ESD-TR-87°172 F19626-85-C-0003 /G 12/5

NL

B, gl % A e o I T T T T
A
:.ﬁ:c\l.!‘l'?l’- W, l".“l:;:::\::i.l.e.?:ek‘::?.l.%&:k: I"l. A WL) l.'.l: l:".::,'\‘l:'tﬂ'..... 0“

1‘

3

S ey 0

i

==
FEEEEEER

EEEE

o

({4

£
Fe

[l .
N ey Ity

I

4

3

;

1

!

i MICROCOPY RESOLUTION TEST CHART |
@, NATIONAL BUREAU OF STANDARDS 1963-A "
= e - —m————)

® ®
"
Y

o L
" %
o
:‘::t, XX u X h.

R T T I I O T S Y N T T N N N N O DU A R ICWRIU L - by FOPBEEP LY

TG FILE CURY T
: - Techrical Report

CMU/SEI-87-TR-21
ESD-TR-87-172

=== Carnegie-Mellon University
—== Software Engineering Institute

WOV
", <

! L
Ty

AD-A185 697

N
Timing Variation in Dual Loop
Benchmarks
Neal Altman
Nelson Welderman
October 1987
¢

public releasey
ttthution .Unlimited

Dis

¢ 87 1V ;4 289 §

N A L P e K R A e T
N O I AT AL R DD O FIAEITOE RO AR AT D, W v

)

-

WA

"

-t W e
et

P e
\J 1-‘

¥ o
Ay %
A

~
o 5 A

5
4 Py

4

L B G
2 {&\;-'._

We

e

L
T
<

z'I

A (&4 .I .n' '/ "« ¥

.

o

A
Al

v
P g
&

e

s

oA
TR G RN
e e

'''''''

Technical Report
CMU/SEI-87-TR-21

ESD-TR-87-172
October 1987

‘.
® Timing Variation in Dual Loop
Benchmarks

Neal Altman

Member of the Technical Staff
Ada Embedded Systems Testbed Project

o
Nelson Weiderman
Project Leader
Ada Embedded Systems Testbed Project

-

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

, ¢ I A - PO WALIPL WL RN EFCUIPS WLAP CURPUAPS S W TP . LR TSP 7 APC PRI SASUTASERMIN U PRt PSR TR TLPU TSR TLR BIUNLN AN SUNPON PR LN U PUN T L

This technical report was prepared for the

[SE! Joint Program Office
4. ESD/XRS

;-. Hanscom AFB, MA 01731
.

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

.I

“

Review and Approval

MR N B)

This report has been reviewed and is approved for publication. o

- FOR THE COMMANDER

[

Karl H. Shingler
SE| Joint Program Office

- &

‘w

Lt o D N B8 g~

‘ This work is sponsored by the U.S. Department of Defense.

S Copyright © 1987 by the Software Engineering Institute.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
' scientific and technical intormation for DoD personnel, DoD contractors and potential contractors, and other U.S.
' Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandna, VA 22304-6145.

X Copies of this document are also available through the National Technical Information Services. For informaton on
) ordering, please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce,
Springtieid, VA 22161.

4 Ada is a registered trademark of the U.S. Government, Ada Joint Program Office. DEC, MicroVAX, ULTRIX. VAX,

VAXELN, and VMS are trademarks of Digital Equipment Corporation. SD-Ada is a registered trademark of Systems
Y Designers pic. VADS i a registered trademark and Verdix is a trademark of Verdix Corp. TeleGen?2 is a trademark of
TeleSoft.

L { » * ” - O Ny T OIN % .-
.- ‘o i W 3 ¢ .l. !o‘l- .\’!'Jl.., -‘ "J' TS Y

NN

Table of Contents

1. Dual Loop Benchmarks: Purpose and Assumptions

2. Testing the Validity of the Dual Loop Design for Timing Benchmarks
3. Conclusion

References

Appendix A. Specific Configurations Tested
A.a. MicroVAX/VAXELN
A.b. MC68020/SD-Ada

Appendix B. Raw Data
B.a. CAL2 for the MicroVAX/VAXELN
B.b. CAL2 for the MC68020/SD-Ada

Appendix C. Test Programs
C.a. CAL2 Source Code for the MicroVAX/VAXELN
C.b. CAL2 Source Code for the MC68020/SD-Ada

~N W =

"
11
11

13
13
14

17
17
20

Accesion For

NTIS CRAGI Y

DTIC TAB [
Unannonuniced O
Justiiceton o]
5
Dw t-ibution |

e

i
:

|

LAuadataty Codes

CAVOE and]or
Gt . SE “Cial

CMU/SEI-87-TR-21

O f~\’ .‘ . < Ca™t

w- - " o C RS wy LU P T . Y
U P N N SO R w9 S G it 2t Syt i WA

Py

1.

o
R4
)
>
'
)
B
)
N
M
-
b
B
t
1
'
}'
v -
r4
1
K
3
3
K
]
' -~
4
[}
!
v
[
(
i:
l -
-
)
&
+
)
1
'
*
K
-
L]
|
¢
-
»
»
L]
]
<
)
)
1)
b
1] CMU/SEI-87-TR-21
’
4
[}

]
[%a 8% 19 ¥ p % 3 LS ., LTRSS A A BT R LA TR R
MO AN M‘.’f‘-f‘.‘f‘w.’. LNt A N l‘o". .00 b Y,y BRI Mx‘ﬁﬁm‘h‘f \‘:ﬁmmi‘-ﬂi‘\ NI ':\i‘i

T Cpl_ aF. gt RV AW et SN aV v gl g g RS 8%, BV gf 0% at ata gV g% 4 #P W pf g atl gt g0 at . gV, gV, gy b gt gty sV gty 2. §¢

List of Tables

Table 2-1: CAL2 Test Results from VAXELN Ada (time in seconds) 4

Table 2-2: CAL2 Test Results from SD ADA-Plus on the 68020 (time in 5
seconds)

CMU/SEI-87-TR-21 0]

Py r - 'd"‘d‘ e W - n*v-’v-’-*-*-.‘-f- -'--,~..-..- LA T
<, A O N NN S N O O R, N

LY

........

Gy

[y

o 2

f"f’fffd

v e s 9 °

LA RS

T T

Lan s . o

T

-

Timing Variation in Dual Loop Benchmarks

Abstract

> Benchmarks that measure time values using a standard system clock often employ a
dual loop design. One of the important assumptions of this design is that textually
identical loop statements will take the same amount of time to execute. This as-
sumption was tested on two bare computers with Ada® test programs and has been |
demonstrated to be inaccurate in these specific testcases. | .. - 4 .o dslas

1oal s j‘ Gl rx A?))
1. Dual Loop Benchmarks: Purpose and Assumptions

Benchmarks are tests designed to measure the capabilities of a computer system. They are
used to compare different computer systems and determine the suitability of a computer system
for particular tasks. Banchmarks show a wide variation in what they are intended to measure,
how they are designed, and how they are implemented. Many benchmarks produce outputs that
are measurements of the time required to perform some task. A common technique is to write a
program that performs some interesting bit of work (e.g., a rendezvous) sandwiched between
calls to a system timer.

Benchmarks that use time as a unit of measure vary widely in the time they require to run. Some
tasks are brief and can take fractional parts of a second to execute. Others measure durations of
minutes or hours. The ability of computer clocks to measure this range of times also varies
widely. A system clock available to a benchmark designer may be accurate only to a tenth of a
second, far t00 slow to measure an event in the millisecond or microsecond range. More ac-
curate timing devices are often available, but as an option rather than as a standard component.
For benchmarks intended for general use, a dual loop benchmark design is often used to permit
the benchmark to execute on an unmodified system.

Dual loop benchmarks handie the problem of imprecise clocks by extending the duration of the
test to a length that the clock can readily measure. The time required for a test is extended by
repeating the test numerous times between calls to the system timer. Repetition is usually pro-
grammed by inserting the test in a loop, where the number of repetitions may be conveniently
changed. The increased time duration of the test series can be measured easily, and the time for
the individual test can be determined by computing the average value for the test series. Intro-
ducing a loop construct into the test adds time, which must be factored out. This is done with a
second loop, a control loop, which contains only the loop construct and not the actual test. The
time required for the benchmark is assumed to be the value obtained by subtracting the control
loop time from the test loop time. An Ada skeleton for a dual loop benchmark appears as
follows:!

This Ada program fragment requires that the constant SOME_VALUE and a procedure TEST be added before the
program can actually be run. In actual practice, precautions must be taken to ensure optimization by the compiler does
not alter the essential program structure. For example, because the empty loop contains no executable statements, it
might be removed by a compiler.

CMU/SEI-87-TR-21 1

- -

with CALENDAR; use CALENDAR;

procedure DUAL LOOP_EXAMPLE is

NUMBER OF_ TESTS : constant INTEGER := SOME_VALUE;

START TEST : CALENDAR.TIME;

STOP_TEST : CALENDAR.TIME;

START CONTROL : CALENDAR.TIME;

STOP_CONTROL : CALENDAR.TIME; -
AVERAGE TIME : DURATION:

begin

-=- Tast loop

START TEST := CALENDAR.CLOCK;

for INDEX1 in 1..NUMBER OF_TESTS loop
TEST; -- Tast.

end loop;

STOP_TEST := CALENDAR.CLOCK;

== Control loop

START CONTROL := CALENDAR.CLOCK; -
for INDEX1 in 1..NUMBER OF_TESTS loop

null; -= No Test.
end loop:;

STOP_CONTROL := CALENDAR.CLOCK:

AVERAGE_TIME := ((STOP_TEST - START TEST) - -
(STOP_CONTROL - START_CONTROL))
/ NUMBER OF TESTS;
end DUAL_LOOP_EXAMPLE;
A critical assumption made by the dual loop benchmarking scheme is that textually equivalent
code constructs require the same amount of time to execute. In other words, time required by the
loop constructs and control loops are substantially identical. -

“

2 CMU/SEI-87-TR-21

T) " 0 W e W N% ¥ % F e J P PN, ™ P I BN S I T I " AN S ™ TE Y T e L MW v, Y
T I W T N S T AT A g0 T A A e A A 21 N T A A AT e DTN T Tl A T N A 0 A A N AT A A

t!

R Qo 2 S S Y e NN

2. Testing the Validity of the Dual Loop Design for
Timing Benchmarks

The assumption that textually equivalent loops require similar amounts of time was subjected to
test with Ada compilers for two bare machines: a DEC MicroVAX 1™ computer using VAXELN™
Ada Ver. 1.1, and a Motorola 68020 single board computer using Systems Designers’ SD
Ada-Plus™ Ver. 28.01. Times were obtained using the routines in package CALENDAR. For
DEC Ada, SYSTEM.TICK was 0.01 seconds. For SD Ada-Plus, SYSTEM.TICK was approxi-
mately 0.0078 seconds (actually 2-7 seconds).

The test program, CAL2, used the format of the Ada dual loop skeleton, but it increased the
number of loops to five. Each loop was inserted into a procedure. The source code for each loop
was made as similar as possible. Only the names of the procedures containing the test loops
were allowed to differ between loops. By calling the procedures in different sequences, the order
of loop execution was varied (e.g., first order, 1-2-3-4-5; next order, 5-4-3-2-1; then, 2-5-1-3-4).
This variation tested the hypothesis that the execution time for a loop may be affected by the run
sequence. Rather than using completely empty loops, a calf to a single subroutine was placed in
each loop, and appropriate checks were made to ensure that the subroutine call was not op-
timized out of the loop by the Ada compiler during program transiation. The light loading factor
was imposed arbitrarily, but it matched the test loop of a benchmark measuring subroutine call
overhead. Output of test results was initiated only after testing was complete. There were two
versions of CAL2, one for VAXELN and one for the 68020, reflecting the differences in the /0
packages available under the two compilers. The VAXELN version is included as Appendix C.a
(page 17), and the 68020 version as Appendix C.b (page 20). Note that the 68020 version uses
the package TARGET_IO rather than TEXT_IO.

The assembly language translations produced by each compiler were examined. The code for
the loops proved to be identical except for names of variables, procedures, and labels.

The programs were run three times on each target and showed a consistent pattern. Times for
individual loops were consistent, while times between loops showed noticeable variation (Tables
2-1 and 2-2). The timings were sensitive to the number of loop iterations, the exact format of the
loop, the location of program code in memory, and other factors.2 The examples included here
show a maximum difference between loops of about 12%. The raw output is included in Appen-
dix 8.

CAL2 showed a consistent pattern of variaton on each of the tested systems. The
MicroVAX/VAXELN Ada combination showed one “slow loop™ and four “fast loops" with simiiar
times. The 68020/SD-Ada combination showed two "slow loops™ and three "fast loops.” Again,
the two categories of loops shared similar times. The order of execution of the individual loops
had no effect on the times.

2Completa information is provided in [1].

CMU/SEI-87-TR-21 3

LA o L g

4

Tmluvrr\a R ach ik atl ath XA LBE L TA L RAC Yab o Ba0 S8 Dol ot Sl SR Bk a8 B A R S g A AUl e BV £Va MG MELALNETA AL AR NAL Vel el Fof Vo WoR Vob 4of Vof a0 U.0 PR T.0 bod 0000 8% 0"

-,
.

L A e N DT A

ot

) G e g

s B g

“v W X8

r

[T 2 P FR R

P S IR

N

£

"

ey
-~

-

QI
'

n
-

Trial A

Trial B

Trial C

Loop 1 Loop 2 Loop3 Loop 4 Loop5

Mode 438 438 491 438 438

Mean 438 438 491 438 438

Range .01 .02 .01 .01 .01
(20 samples, 100,000 iterations/loop)

Loop 1 Loop2 Loop 3 Loop 4 Loop5

Mode 437 437 491 437 4.37

Mean 437 437 491 437 437

Range .02 .01 .01 .01 .01
(20 samples, 100,000 iterations/ioop)

Loop1 Loop2 Loop 3 Loop 4 Loop5

Mode 437 437 491 437 437

Mean 437 437 491 437 437

Range .02 .01 .00 .01 .01
(20 samples, 100,000 iterations/loop)

Variation
.53(12.1%)
.53(12.1%)

Variation
54(12.4%)
54(12.4%)

Variation
54(12.4%)
54(12.4%)

Table 2-1: CAL2 Test Resuits from VAXELN Ada (time in seconds)

The cause of the variation in times was analyzed. For the MicroVAX, testing established that the
loop position in memory was the critical factor. The virtual memory space of the MicroVAX is
divided into 512-byte pages, which correspond to identically sized physical pages. The slow loop
happened to span a page boundary and consequently ran more slowly due to the overhead
inherent in shifting between pages; the loop changed as the program size changed. A suggestion
that the variation was caused by the byte alignment of individual loops with respect to the four-
byte MicroVAX word was considered, but the byte alignment of the loops was identical (compared

to the start of word boundaries).

The 68020 processor accessed memory by word (four bytes), while the SD-Ada compiler placed
the loop statement without regard to word boundaries. As a consequence, certain loops were

aligned more advantageously and required fewer memory accesses to execute.

CMU/SEI-87-TR-21

|
\ Loop1 Loop2 Loop 3 Loop4 Loop5 Variation
{ Trial A Mode 2.055 2258 2055 2312 2.055 256(12.5%)
{ Mean 2.054 2259 2055 2310 2.054 256(12.5%)
; Range .008 .008 .008 .007 .008

(20 samples, 100,000 iterations/loop)

®
Loop1 Loop2 Loop 3 Loop 4 Loop5 Variation
Trial B Mode 2055 2250 2.0585 2312 2055 257(12.5%)
Mean 2.055 2250 2.055 2310 2.055 255(12.4%)
Range .008 .008 .008 .007 .000
® (20 samples, 100,000 iterations/loop)
Loop 1 Loop2 Loop3 Loop4 Loop5 Variation
Trial C3 Mode 2.086 2062 2133 2055 2.180 125 (6.1%)
Mean 2084 2066 2.133 2.055 2.181 126 (6.1%)
c Range .008 .031 000 .000 .008
(20 samples, 100,000 iterations/loop)
Table 2-2: CAL2 Test Results from SD ADA-Plus on the 68020 (time in seconds)
o
]

3Minor changes to the source code forced the recompilation of CAL2 for Trial C. Note the difference in times when Trial
C is compared to Trials A and B. The source code for Trial C is included in Appendix C.

CMU/SEI-87-TR-21

6 CMU/SEI-87-TR-21

:: '\'ﬁ e P %] -‘t-'ﬂ'\t;:;C""rit"'“""'."""'['*'N"‘ -.v
% -ﬂﬂnm

¢

-

1
"

R N

e)

Ty

>,
¥ ’ .

‘Bva'ain’ gt “atatatatatat B (a8 Sap ¢ Y AT RN TR oo TR NU e g4 'a

3. Conclusion

It is not clear that the variation observed in these examples will be seen on all systems or that
some variation in loop timings is sufficient to completely invalidate the technique. However,
practitioners who simply prepare and run dual loop benchmarks without validation may garner
resuits that are not accurate. This source of variation appears to be dependent on the specific
hardware/software combination under test; thus, the amount of variation will vary depending upon
the hardware, the system software, the format of the benchmark, and the specific load points
selected by the interaction of these components. As a consequence, the accuracy of a dual loop
benchmark depends upon a highly specific set of circumstances and cannot be controlled by a
general technique when the benchmark is written.

Dual loop benchmarking is based on the assumption that the time taken to execute two textually
identical loops will be substantially identical. Simple tests have demonstrated-that textually iden-
tical loops exhibit substantial variation in execution time on specific test systems. The conse-
quence of this variation is that benchmark programs using the dual loop paradigm to measure the
execution time of a particular Ada feature (such as a subroutine call) can and do produce nega-
tive values. The positive values produced by such test suites can be erroneously accepted as
accurate despite unbounded relfative errors.

CMU/SEI-87-TR-21 7

A L P L AT T NN
. . T R Y YL C) K N Ealdalt

o B Al

l’\._‘- -F\ "

"

.- T, "

NN

8 CMU/SEI-87-TR-21

References

(1 Altman, Neal.
Factors Causing Unexpected Variation in Ada Bechmarks.
Technical Report CMU/SEI-87-TR-22, Software Engineering institute, Carnegie Mellon
University, Pittsburgh, PA 15213, October, 1987.

CMU/SEI-87-TR-21 9

o e AP’ AT T AT . et W wm e
. pf'il ‘V"‘-\- -..'\..'-'-

N NN N T N L AN L A AT N T
AR, L PN ST AL, RPN 5 A PO NN Ny A Y

LS,

CMU/SEI-87-TR-21

Appendix A: Specific Configurations Tested

A.a. MicroVAX/VAXELN

System Type: MicroVAX |1 (two identical configurations, SEIYB and SEIYC)
Manufacturer: Digital Equipment Corporation

Processor: KA-630

Peripherals: Console terminal, KWV11 real-time clock; DRV11J parallel interface

Ada Compiler: DEC VAX™ Ada Ver. 1.3-23 (under MicroVMS™ Ver. 4.5); VAXELN Ada
Ver. 1.1 (under MicroVMS Ver. 4.5)

Run Time: VAXELN, Ver. 2.3; VAXELN Ada, Ver. 1.1

Vendor: Digital Equipment Corporation

A.b. MC68020/SD-Ada

System Type: MVME™133 single board processor in Motorola VME bus enclosure
Manufacturer: Motorola Microsystems

Processor: MCs88020, 12.5 Mhz.

Peripherals: Console terminal, two RS232 host connections

Ada Compiler: SD Ada-Plus VMS™ x 68020, Release 2B.01 (under MicroVMS Ver. 4.5)
Run Time: SD-Ada VMX® x 68020, Release 2B.01

Vendor: Systems Designers pic.

CMU/SEI-87-TR-21 11

'— J‘{'f‘f'f‘:.f".'\'.‘.:f.;l'.",".ﬁ.‘ '(.:."-f'?_:{'.‘,:f.:f,'.'f'f-"‘-' AT AR M A -’-‘.-.h_ A _.‘*\“

MG

L g o g Y

PP

e 5

12 CMU/SEI-87-TR-21

< AL LN T AL P T Al e T T e
Y s el i o VA A Ry s A Tt R Aty Y

.

Ly

TP
Lo o

s

P

’
£y

AT A A AT T R AT A
AN o ¢ oy 4 W, 4

.
r
.
g

P

> Appendix B: Raw Data

B.a. CAL2 for the MicroVAX/VAXELN

CAL2--Multiple executions of identical loops--time in seconds:

[Run on SEIYB on 4/6/87. Build paramaters wers:
characteristic /nofile /noserver /debug=none
program CAL2 /kernel_stack=40 /user_ stack=40 /job_priority=0 -

/process_priority=0 /argument=("CONSOLE:", -

"25"“NA X00000KXX"": :PS: [NA.REASON_T.CAL2]CAL2_VAXELN.LOG",

device XQA /register=%0774440 /voctot-QOIZO /priority-l

“CONSOLE: ")

A Test # LOOP_1 LOOP_2 LOOP_3 LOOP_4 LOOP_S Calling Order
‘ 1 4.38 4.39 4.91 4.38 4.38 1-2-3-4-5
‘ 2 4.38 4.37 4.91 4.38 4.38 5-4-3-2-1
| 3 4.37 4.38 4.91 4.38 4.38 2-5-1-3-4
| 4 4.37 4.38 4.91 4.38 4.38 4-1-5-2-3
‘ 5 4.37 4.38 4.91 4.38 4.37 1-2-3-4-5
1 € 4.37 4.38 4.91 4.38 4.38 5-4-3-2-1
‘(" 7 4.38 4.38 4.91 4.37 4.38 2-5-1-3-4
8 4.38 4.38 4.91 4.38 4.38 4-1-5-2-3
9 4.37 4.38 4.91 4.38 4.38 1-2-3-4-5
10 4.38 4.38 4.91 4.37 4.38 5-4-3-2-1
11 4.38 4.38 4.9 4.38 4.37 2-5-1-3-4
12 4.37 4.38 4.9 4.38 4.38 4-1-5-2-3
13 4.38 4.37 4.9 4.38 4.38 1-2-3-4-5
- 14 4.38 4.38 4.91 4.37 4.38 5-4-3-2-1
o 15 4.38 4.38 4.91 4.38 4.37 2-5-1-3-4
16 4.38 4.38 4.91 4.37 4.38 4-1-5-2-3
17 4.37 4.38 4.91 4.38 4.37 1-2-3-4-5
18 4.38 4.38 4.91 4.38 4.38 5-4-3-2-1
19 4.38 4.37 4.91 4.38 4.38 2-5-1-3-4
20 4.38 4.37 4.90 4.38 4.38 4-1-5-2-3
©
CAL2--Multiple executions of identical loops--time in seconds:
Run on SERIYC on 5/29/87. Build parameters were:
characteristic /nofile /noserver /debugesnone
program CAL2 /kernel_stack=40 /user_stack=40 /job_priority=0 -
/process _prio:ity-o /argqument= ("CONSOLR:", -~
N "25""NA X00000XX"*: :PS: ([NA.REASON_T. CAL2]CAL2 VAXELN.LOG", "CONSOLE:")
device XQA /register=%0774440 /vector=s0120 /prio:ity-l
Test # LOOP_1 LOOP_2 LOOP 3 LOOP_4 LOOP_S Calling Order
1 4.39 4.38 .92 4.238 4.38 1-2-3-4-5
2 4.37 4.37 4.91 4.37 4.37 5-4-3-2-1
3 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
. 4 4.37 4.37 4.9 4.37 4.37 4-1-5-2-3
L) 4.37 4.37 4.91 4.37 4.37 1-2-3-4-5
6 4.37 4.37 4.91 4.37 4.37 5-4-3-2-1
7 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
8 4.37 4.37 4.91 4.37 4.37 4-1-5-2-3
9 4.37 4.37 4.91 4.37 4.37 1-2-3-4-5
10 4.37 4.37 4.91 4.37 4.37 S5-4-3-2-1
11 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
\ 12 4.37 4.37 4.91 4.37 4.37 4-1-5-2-3
13 4.37 4.37 4.91 4.37 4.37 1-2-3-4-5
14 4.37 4.37 4.91 4.37 4.37 S-4-3-2-1
15 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
. CMU/SEI-87-TR-21 13
i.:.:,g-.'.\{‘;iy l,.}s,"_ ':.ﬂ '\. ‘.' \“'w" .,\'.'-"'-)\'...\)-'.-'-)- A e

- -

- - o W

5 W ®

v W,

f

]

o
4]
1
|

RGN ot oo ’.P.- "

CAL2--Multiple executions of identical loops--time in seconds:

Run on SRIYC on 5/29/87. Build parameters were:
characteristic /nofile /noserver /debugwnone
pProgram CAL2 /kernel_stack=40 /user_stack=40 /job_priority=0 -
/process_priority=0 /argument=("CONSOLE:", -
25""NA 0000IXXX"*: :PS: (NA.REASON_T.CAL2)CAL2 VAXELM.LOG", “CONSOLE:")
device XQA /register=%0774440 /voctoMOIZO /pr!.ortty-‘

Test # LOOP_1 LOOP_2 LOOP_3 LOOP_4 LOOP_ S Calling Order
1 4.39 4.38 9 4.38 4.38 1-2-3-4-5
2 4.37 4.37 4.91 4.37 4.37 5-4-3-2-1
3 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
4 4.37 4.37 4.9 4.37 4.37 4-1-8-2-3
S 4.3 4.37 4.9 4.37 4.37 1-2-3-4-5
6 4. 7 4.37 4.91 4.37 4.37 5-4-3-2-1
7 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
8 4.37 4.37 4.91 4.37 4.37 4-1-5-2-3
9 4.37 4.37 4.91 4.37 4.37 1-2-3-4-5

10 4.37 4.37 4.91 4.37 4.37 5-4-3-2-1
11 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
12 4.37 4.37 4.91 4.37 4.37 4-1-5-2-3
13 4.37 4.37 4.91 4.37 4.37 1-2-3-4-5
14 4.37 4.37 4.91 4.37 4.37 5-4-3-2-1
1S 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
16 4.37 4.37 4.91 4.37 4.37 4-1-5-2-3
17 4.37 4.37 4.9 4.37 4.37 1-2-3-4-5
18 4.37 4.37 4.91 4.37 4.37 5-4-3-2-1
19 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
20 4.37 4.37 4.91 4.37 4.37 4-1-5-2-3

B.b. CAL2 for the MC68020/SD-Ada

Date: Friday, 24 April 1987 10:43:30 EST
From: John.Slusarxz@sei.om.edu
To: nadsei.cmu.edu

#** Note: Leading zeros added to fractional portions of times which
required them. This is a fix of the output problem with the
original version of CAL2 SD. NWA 5/28/87 #we

CAL2_SD--Multiple executions of identical loops--time in seconds:
Test # LOOP_1 LOOP_2 LOOP_3 LOOP_4 LOOP_S5 Calling Order

1 2.0858 2.258 2.058 2.312 2.08% 1-2-3-4-8
2 2.05% 2.258 2.055 2.312 2.055 5-4-3-2-1
3 2.085 2.258 2.058 2.312 2.085 2-5-1-3-4
4 2.058 2.258 2.08% 2.312 2.055 4-1-5-2-3
§ 2.085 2.258 2.05S 2.312 2.058 1-2-3-4-5
6 2.0858 2.258 2.055 2.312 2.085 5-4-3-2-1
7 2,055 2.258 2.05S 2.312 2.085 2-5-1-3-4
8 2.055 2.258 2.055 2.312 2.055 4-1-5-2-3
9 2.055 2,258 2.055 2.312 2.055 1-2-3-4-5
10 2.055 2.258 2.058 2.312 2.055 5-4-3-2-1
11 2.088 2.258 2.055 2.312 2.085 2-5-1-3-4
12 2.047 2.258 2.055 2.308 2.047 4-1-5-2-3
13 2.058 2.2%8 2.055 2.312 2.055 1-2-3-4-5

14

L AC TN L B A A A A R A N I S A N N N N A A A A AT AT AT

CMU/SEI-87-TR-21

./- AT AT A .r-a-.

14 2.055 2.266 2.055 2.308 2.055 5-4-3-2-1
15 2.085 2.258 2.055 2.312 2.055 2-5-1-3-4
16 2.055 2,258 2.047 2.305 2.055 4-1-5-2-3
17 2.047 2.258 2.055 2.305 2.047 1-2-3-4-5
18 2.055 2.258 2.055 2.305 2.047 5-4-3-2-1
19 2.055 2.266 2.055 2.305 2.055 2-5-1-3-4
20 2.055 2.258 2.05% 2.312 2.055 4-1-5-2-3

Another run :

(212221122)

CAL2_SD--Multiple executions of identical loops--time in seconds:

Test # LOOP_1 LOOP_2 LOOP_3 LOOP_4 LOOP_S Calling Order

1 2.055 2.250 2.055 2.312 2.055 1-2-3-4-5
2 2.055 2.250 2.055 2.312 2.055 5-4-3-2-1
3 2.055 2.250 2.055 2.312 2.055 2-5-1-3-4
4 2.055 2.250 2.055 2.312 2.055 4-1-5-2-3
S 2.085 2.250 2.055 2.312 2.055 1-2-3-4-5
6 2.047 2.250 2.055 2.305 2.055 5-4-3-2-1
7 2.055 2.250 2.055 2.305 2.055 2-5-1-3-4
8 2.055 2.250 2.08% 2.312 2.085 4-1-5-2-3
9 2.085 2.250 2.055 2.312 2.055 1-2-3-4-5
10 2.055 2.250 2.055 2.312 2.085 5-4-3-2-1
11 2.085 2.250 2.085 2.312 2.055 2-5-1-3-4
12 2.055 2.250 2.055 2.312 2.0S5 4-1-5-2-3
13 2.055 2.250 2.055 2.312 2.055 1-2-3-4-5
14 2.055 2.250 2.047 2.305 2.055 5-4-3-2-1
15 2.055 2.250 2.055 2.312 2.055 2-5-1-3-4
16 2.055 2.250 2.085 2.308 2.055 4-1-5-2-3
17 2.0855 2.258 2.055 2.305 2.0S5 1-2-3-4-5
18 2.055 2.250 2.085 2.312 2.085 5-4-3-2-1
19 2.055 2.250 2.055 2.312 2.055 2-5-1-3-4
20 2.085 2.250 2.085 2.312 2.055 4-1-5-2-3

Date:
From:
To:

Thursday, 28 May 1987 13:28:54 EDT
John. Slusarz@seli.cm.edu
na@sei.cm. edu

RRARRARREN

CAL2_SD--Multiple executions of identical loops--time in seconds:

Test # LOOP_1 100P_2 LOOP_3 LOOP_4 LOOP_S Calling Order

1 2.086 2.055 2.133 2.055 2.180 1-2-3-4-5
2 2.078 2.062 2.133 2.058 2.188 S5-4-3-2-1
3 2.078 2.086 2.133 2.055 2.188 2-5-1-3-4
4 2.086 2.062 2.133 2.0S85 2.180 4-1-5-2-3
-] 2.086 2.062 2.133 2.058 2.180 1-2-3-4-5
6 2.086 2.062 2.133 2.088 2.180 S5-4-3-2-1
7 2.086 2.086 2.133 2.055 2.180 2-5-1-3-4
8 2.086 2.078 2.133 2.05S 2.180 4-1-5-2-3
9 2.078 2.070 2.133 2.055 2.180 1-2-3-4-5
10 2.086 2.086 2.133 2.055 2.180 5-4-3-2-1
11 2.086 2.055 2.133 2.055 2.180 2-5-1-3-4
12 2.086 2.062 2.133 2.085 2.180 4-1-5-2-3
13 2.086 2.055 2.133 2.058 2.180 1-2-3-4-5
14 2.07¢ 2.062 2.133 2.055 2.180 5-4-3-2-1
15 2.078 2.085 2.133 2.058 2.188 2-5-1-3-4
16 2.086 2.062 2.133 2.058 2.180 4-1-5-2-3
17 2.078 2.086 2.133 2.055 2.180 1-2-3-4-5
18 2.086 2.055 2,133 2.058 2.180 S5-4-3-2-1
19 2.086 2.062 2.133 2.055 2.180 2-5-1-3-¢
20 2.086 2.055 2.133 2.05S 2.180 4-1-5-2-3
loop alignment data :
loop 1 1line 77 : £82
CMU/SEI-87-TR-21 15
- LR P)] wAeW N . L S Th FE N PRSIV IS] vowy a7 a'w \‘c\-\--\»*c~'\
"|.0|.|..lc. N i 4, %00, 5 N, n‘. Y ol "\ 5~ ' () ""v ’ . O ..

P P T
s e,

L _ro_my

-

A A R

w v 2 r a_n

b S

oYy N Yy)

-

AL S

ap Big B2 AVa RES AU 43 Ta0 ol ta el V. 0. 6a8 ¥o8 .0 €, 8°8.848,.8°1. 9% Bty mts 2l a'p a8 B 48 LV YO TG YL i R W R bt 00% R 4 0t

ada
’
\i
v .
loop 2 line 94 : 1004
loop 3 1line 111 : 1186 “*
loop 4 1line 128 : 1308
: loop 5 1line 145 : 1484
Loops 2 and 4 have starting alignment on 32 bit boundary
A Loops 1,3,5 have starting alignment not on 32 bit
’
\
o

16 CMU/SEI-87-TR-21

A P L v LI IR CmtRt w® N N W NN LA N % LY N . e
W -_ n % .c. "'\\ \ l.‘\ .o. .,.0, .n 9 W) \ LR W, > o (N

Appendix C: Test Programs

C.a. CAL2 Source Code for the MicroVAX/VAXELN

CAL2 is a benchmark calibration routine intended to test the assumption
that textually identical loops will take (approximately) the same amount
of time to execute.

The routine was devised to verify that benchmarks which depend on a
dual test and control loop structure will execute correctly on the
target system.

Test format is to call five functions (LOOP_l1..LOOP_5) executed in
succession. Rach function returns a DURATION value, obtained using
the Ada CALENDER.CLOCK routine. The time is obtained by subtracting
the time as the routine is entered from the time just

prior to the return to caller. Between the two calls, a tight loop is
executed LOOP_REPRTITIONS times. The loop contains a single call to
procedure PROC. PROC simply serves to place a light lcad in each of
the timing loops.

The test calls are made in a number of arbitrary orders to allow
detection of any effects relating to the total number of machine
cycles, as opposed to tha ordering of the LOOP routines.

The test sequence is executed TEST REPETITIONS times to allow for system
intialization effects (and possibly interruptions during execution).

Results are cutput at the conclusion of all tests.

Programming notes:
o The package T _ROUTINE contains a small routine PROC, which simply
assigns a fixed value to the single integer argument, ARG. It is
isolated in a package to prevent its being optimized to an inline

assignment.
Known bugs:
<none>
Whe Date Remarks
NWA 16 June 87 Corrected comments.
NWA 4 April 87 Adapted from bencharking test routine TEST 9.

package T _ROUTINRE is

procedure PROC (ARG: in out INTEGER):

end T_ROUTINE;

with T_ROUTINE; use T_ROUTINE;
with CALENDAR; use CALENDAR:
with TEXT_IO; use TEXT_I0.

procedure CAL2 is

package TIME IO is new FIXED_IO(DURATION); use TIME_IO:
package INT_ IO is new INTEGER_IO(INTEGER); use INT_IO:

LOOP_REPETITIONS: constant INTEGER := 100000;
TEST_REPETITIONS: constant INTEGER := 5;

SEQUENCE_COUNT: constant INTRGER := 4;
LOOP_COUNT: constant INTEGER := §;
CMU/SEI-87-TR-21 17

5 e v 5 o >

e e e s s 9 ¥

. o o, - a~g-"

»_ v

LOOP_TIMES: array (1..TEST REPETITIONS, 1l..SEQUENCE_COUNT,
1..LOOP_COUNT) of DURATION;

SEQUENCE_LENGTH: constant INTEGER := (LOOP_COUNT * 2) - 1;
CALLING_SEQUENCE: array (1l..TEST_REPETITIONS, 1..SEQUENCE_COUNT) of
STRING (1. .SEQUENCE_LENGTH) ;

function LOOP_1 return DURATION is -
START_TDH®: TDG;
EXD_TIME: ™me;
A_VALUR: INTRGER := 12;
begin
START TIMR := CLOCK; -
for INDEX in 1..LOOP_REPRTITIONS loop
PROC (A_VALUR) ;
end loop;

END_TIME := CLOCK;
return END_TIME - START TIME;
end LOOP_1;

function LOOP_2 return DURATION is

START_TIME: TIMR;
END_TIME: TINE;
A_VALUR: INTRGER := 12;
begin . o

START TIMR := CLOCK:
for INDEX in 1..LOOP_REPETITIONS loop
PROC (A_VALUR) ;
end loop:
END_TIME := CLOCK;
return END_TIME - START TIME;
end LOOP_2;

LB

function LOOP_3 return DURATION is

START TIMR: TIMR;

END_TIME: TIME;

_VALUR: INTEGER := 12; -
begin

START TIME := CLOCK;

for INDEX in 1..LOOP_REPETITIONS loop

PROC (A_VALUR) ;

end loop;

END_TIME := CLOCK; .

return END_TIME - START_TIME: -
end LOOP_3:

- - - - = = = = = = = = o e - - - -

function LOOP_4 return DURATION is

START_TIMR: TIME; :
END_TIME: TIME; -
A_VALUR: INTEGER := 12;
18 CMU/SEI-87-TR-21

A L O T T AT e i T s T I AT i Ve o W N TS I D S TP NS AT T N

o T - - -

P = ar—

FUN O R UGITR TR AR AN A KR EN LY AN X VU UNE “ak8 '8 2i4 2%k 2R a%A’2VA" R oo > gas oV gat Bav . Pl @at

begin
START TIME := CLOCK;
for INDEX in 1..LOOP_REPETITIONS loop
PROC (A_VALUE) ;
end loop:
END_TIME := CLOCK;
return END_TIME - START_TIME;
end LOOP_4:

OE - ——ar

function LOOP_S5 return DURATION is

START_TIME: TIME
END_TIME: TIME
A_VALUE: INTEGER := 12;

e we

begin
START _TIMRE := CLOCK: }
for INDEX in 1..LOOP_REPRTITIONS loop)
PROC (A_VALUE) ;
end loop;
RND_TIME := CLOCK; !
return END_TIME - START_TIME: i
end LOOP_S;

begin .;

for CURRENT TEST in 1..TEST_REPRTITIONS loop

Calling sequence one:
CALLING SEQUENCE (CURRENT_TEST, 1) := “1-2-3-4-5";
LOCP_TIMRES (CURRENT TRST, 1, 1) :w=
LOCP_TIMES (CURRENT TEST, 1, 2) :=
LOOP_TIMES (CURRENT TEST, 1, 3) :=
100P_° rms(cmnr TEST, 1, 4) .=
LOOP 'rms(cmnt TEST, 1, 35) :=

L NN

ce e wo Sa W

T

Calling sequence two:
CALLING_SEQUEMNCE (CURRENT_TRST,
LOOP_TIMES (CORRENT TEST, 2, §) :=
LOOP_ rms(cunm TEST, 2, 4) :=
LOOP_!MS(W_MT 2,3 :=

2
2

[
~
[]
3
(7]
]

-3-2-1%; .

35

wWaw

LOOP_TIMES (CURRENT_TEST, 2) :=
LOOP_TIMES (CURRENT_TEST, l) :=

N

e e s ve Se &

38

Calling sequence three:

CALLING_SEQUENCE (CURRENT TEST, 3) :m "2-5-1-3-4"; .
LOOP_TIMRS (CURRENT_TRST, 3, 2) := LOOP_2; \
LOOP_TIMRS (CURRENT_TRST, 3, S) := LOOP_S; J
LOOP_TIMES (CURRENT_TES?, 3, 1) := LOOP_1:

LOOP_TIMES (CURRENT TRST, 3, 3) := LOOP_3;)
LOOP_TIMES (CURRENT_TRST, 3, 4) := LOOP_4; X

Calling sequence four:
CALLING_SEQUENCR (CURRENT_ TEST, 4) := "4-1-5-2-3~; Y
LOOP_TIMES (CURRENT TEST, 4, 4) := LOOP_4; ¥

LOOR_TIMES (CURRENT_ TEST, 4, 1) := LOOP_._I: :

LOOP_TIMES (CURRENT_TEST, 4, S5) := LOOP_S: r

Loop unl:s (CURRENT_TEST, 4, 2) := LOOP_2;

I.OOP_‘!’IHIS (CURRENT_TEST, 4, 3) := LOOP_3; h
end loop:;

PUT_LINE ("CAL2--Multiple executions of identical loops--time in seconds:"):
NEW_LINE:
PUT_LINE("Test # LOOP_1 LOOP_2 LOOP_ 3 LOOP_4 LOOP_S Calling Order®);

CMU/SEI-87-TR-21 19

-,-.--.----.---- L) Y™ LIS S TS 2 TN Y \
el T eI Tt i el g S B e N A RNy W iy € Y o

Nal Ve Yol Nal Vo b @ ol "t L8 B caf Tar Ta¥ cab Ta af e Yol Caf tal Sat calt, 2@ B 9.V ‘ata 3t gl ata vl g " W AW L s 4% b Bty 478 §Y > ‘e §'a a8,

for INDEX 1 in 1..TEST_REPETITIONS loop
for INDEX 2 in 1..SEQUENCE _COUNT loop -
PUT((((INDEX 1 - 1) * SEQUENCE_COUNT) + INDEX_ 2), §6);
for INDEX 3 in 1..LOOP_COUNT loop
PUT (LOOP_TIMES (INDEX 1, INDEX_ 2, INDEX_3), 5, 2);

end loop;
PUT(* ");
PUT (CALLING SEQUENCE (INDEX 1, INDEX 2)):
NEW_LINE;
end loop; -
end loop;
end CAL2;
package body T ROUTINE is
procedure PROC(ARG: in out INTEGER) is
begin
ARG := 42;
end PROC;
end T_ROUTINE;
C.b. CAL2 Source Code for the MC68020/SD-Ada
== i
-- CAL2 is a benchmark calibration routine intended to test the assumption
-- that textually identical loops will take (approximately) the same amount
-~ of time to executs. -
-- CAL2_SD is a modified version which uses the restricted I/O facilites
-- provided by the SD compiler (Ver. 2BOl).
-- The routine was devised to verify that benchmarks which depend on a
== dual test and control loop structure will execute correctly on the
-- target system.
-~ Test format is to call five functions (LOOP_1..LOOP_5) executed in -

-~ succassion. Each function returns a DURATION value, obtained using
-- the Ada CALENDER.CLOCK routine. The time is obtained by subtracting
-- the time as the routine is entered from the time just A
-- prior to the return to caller. Between the two calls, a tight loop is

~=- executed LOOP REPETITIONS times. The loop contains a single call to

==~ procedure PROC. PROC simply serves to place a light load in each of

-= the timing loops.

-- The test calls are made in a number of arbitrary orders to allow
-- detection of any effects relating to the total number of machine
~-= cycles, as opposed to the ordering of the LOOP routines.

-- The test sequence is executed TEST REPETITIONS times to allow for system
== intialization effects (and possibly interruptions during execution).

~- Results are output at the conclusion of all tests.

-- Programming notes:
-- o The package T_ROUTINE contains a small routine PROC, which simply

-- assigns a fixed value to the single integer argument, ARG. It is
-- isclated in a package to prevent its being optimized to an inline
- assignment.
-- Known bugs:
-- <none>
20 CMU/SE!-87-TR-21

] T g T e e T T g P T TS PRI AR AR TR L T L ULS QLT ST S B R -
M‘-‘*‘;l‘:.l‘.."’..‘l‘.\l- DN WF W LW "' " *""" " '. " i I , Wt L y .(i‘ " W ", v."h b W W

a ¥ P % Y. Na S a D Mk Ag X LR A

FICTARKEX

&

\J

-- Who Date
NWA 16 June 87
JAS 18 May 87
-- NWA 6 April 87
NWA 4 April 87

Corrected comments.

Fixed so that SD I/0 will function correctly.
Modified to work with SD compiler.

Adapted from bencharking test routine TEST_9.

package T _ROUTINE is

procedure PROC (ARG:

end T_ROUTINE;

in out INTEGER);

with T_ROUTINE; use T_ROUTINE;
with CALENDAR; use CALENDAR;
with TARGET_IO; use TARGET_IO;

procedure CAL2_SD 1is

LOOP_REPETITIONS:
TEST_REPETITIONS:
SEQUENCE_COUNT:
LOOP_COUNT:

LOOP_TIMES:

SEQUERNCE_LENGTH:
CALLING_SEQUENCE:

TEMP_FLOAT:
TEST_NUMBER:
T_VALUE_INT_PART::
T_VALUE_FRAC_PART:

constant INTEGER := 100000
conatant INTEGER := S;
constant INTEGER := {;
constant INTEGER := 5;

array (1..TEST_REPETITIONS, 1..SEQUENCE_COUNT,
1..LOOP_COUNT) of DURATION:

constant INTEGER := (LOOP_COUNT * 2) - 1;
array (1..TEST_REPETITIONS, 1l..SEQUENCE COUNT) of
STRING (1. .SEQUENCE_LENGTH) ;

function LOOP_1 return DURATION is

START TIME:
END_TIME:
A_VALUE:

begin

TIME;
TIME;
INTEGER := 12;

START_TIME := CLOCK;

for INDEX in 1.

.LOOP_REPETITIONS loop

PROC (A_VALUE) ;

end loop;

END_TIME := CLOCK:

return END_TIME

end LOOP_1:;

- START_TIME:

function LOOP_2 return DURATION is

START_TIME:
END_TIME:
A_VALUE:

begin

TIME;
TIME;
INTEGER := 12;

START_TIME := CLOCK:

for INDEX in 1.

.LOOP_REPETITIONS loop

PROC (A_VALUE) ;

end loop;

CMU/SEI-87-TR-21

~fnia; :;t t':'q{ & :g \ -'-'

'\-":' !':E- Y

21

_' N \ ~'

.A.M\. .L.L'_G-,A. .A._A..'

oL

“®T2 t gy«

.

END_TIME := CLOCK;
return END_TIME - START_TIME;
end LOOP_2; <

function LOOP_3 return DURATION is u

START_TIME: TIME
END_TIMR: TIMR
A_VALUE: INTEGER := 12;

Se v

begin
START_TIME := CLOCK;
for INDEX in 1..LOOP_REPETITIONS loop
PROC (A_VALUE) ;
end loop;
END_TIME := CLOCK; -
return END_TIME - START TIME;
end LOOP_3;

. s

function LOOP_4 return DURATION is y

START_TIME: TIME; -
END_TIME: TIME;
A_VALUR: INTEGER := 12;

begin
START TIME := CLOCK;
for INDEX in 1..LOOP_REPETITIONS loop
PROC (A_VALUR) ;
end ‘loop;
END_TIME := CLOCK: y
return END_TIME - START TIME;
end LOOP_4;

- - - - ;

function LOOP_S return DURATION is .. o

START TIME: TIME;
END_TIMR: TIME;
A_VALUE: INTEGER := 12;

begin
START TIME := CLOCK;
for INDEX in 1..LOOP_REPETITIONS loop :

PROC (A_VALUE) ; .

end loop;
END_TIME := CLOCK; 5
return END_TIME -~ START_TIME;

end LOOP_S; }

begin ‘
for CURRENT_TEST in 1..TEST_REPETITIONS loop

-~ Calling sequence one: '
CALLING_SEQUENCE (CURRENT_TEST, 1) := "1-2-3-4-5"; 3
LOOP_TIMES (CURRENT_ TEST, 1, 1) := LOOP_1; 4
LOOP_TIMES (CURRENT TEST, 1, 2) Loop_2: -
LOOP_TIMES (CURRENT_TEST, 1, 3) LOOP_3; -
LOOP_TIMES (CURRENT_TEST, 1, 4) Loop_4:;

LOOP_TIMES (CURRENT_TEST, 1, 5) LOOP_S: .

CMU/SEI-87-TR-21

)

TP A AR '{-.".'F pf-{‘...". , AT p“‘:_-“,.-..‘_"!pi‘.."\.(- N AT \‘r.(\'\‘- ‘.?\M:* :

-- Calling sequence two:
‘ CALLING_SEQUENCE (CURRENT_TEST, 2) := "5-4-3-2-1";
LOOP_TIMES (CURRENT_TEST, 2, 5) := LOOP_S5;
LOOP_TIMES (CURRENT TEST, 2, 4) := LOOP_4;
LOOP_TIMES (CURRENT TEST, 2, 3) := LOOP_3:
LOOP_TIMES (CURRENT TRST, 2, 2) := LOOP_2;
LOOP_TIMES (CURRENT_TEST, 2, 1) := LOOP_1:

"y == Calling sequence three:
CALLING_SEQUENCE (CURRENT_TEST, 3) := "2-5-1-3-4";
LOOP_TIMES (CURRENT_TRST, T3, 2) := Loorp_2;
LOOP_TIMES (CURRENT TRST, 3, 5) := LOOP_S;
Loop umswmnlr TEST, 3, 1) := LOOP_1:
LOOP_TIMES (CORRENT TEST, 3, 3) := LOOP_3;
LOOP_TIMES (CURRENT TEST, 3, 4) := LOOP_ 4’

@ -- Calling sequence four:
CALLING_SRQUENCE (CURRENT TEST, 4) := "4-1-5-2-3%;
LOOP_TIMES (CURRENT_TEST, 4, 4) := LOOP_4;
LOOP_TIMES (CURRENT TEST, 4, 1) := LOOP_1;
LOOP_TIMRS (CURRENT TRST, 4, 5) := LOOP_S;
LOOP_TIMES (CURRENT TRST, 4, 2) := LOOP 2
LOOP_TIMES (CURRENT_ TEST, 4, 3) := LOOP_. 3'

end loop:

~

.« =

OUT_STRING (VDU_PORT,
"CAL2 SD--mltiplo executions of identical loops--time in seconds:");
NEW_LINE (VDU_PORT) ;
OUT_ _STRING (V'DU PORT,
Terest # 1.00?_1 LOOP_2 LOOP_3 LOOP_4 LOOP_S Calling Order"):
NEW_LINE (VDU_PORT);
_ for . INDEX_1 in 1..TEST_RRPRTITIONS loop
L for INDEX 2 in 1. .S!QURNCI COUNT loop
rnsr_uumx :m ((INDEX_ 1 - 1) * SEQUENCE_COUNT) + INDEX 2;
OUT_DECIMAL INTEGER (VDU PORT, TEST_ NUMBER, 6);
for INDEX_3 in 1..LOOP_COUNT loop
TEMP_PLOAT := !'LOAT(LOOP TIMES (INDEX 1, INDEX_2, INDEX 3)):
T vu.u: INT_PART := INTEGER (TEXP n.ou),
M FLOAT := FLOAT (LOOP_TIMES (INDEX 1, INDEX 2, INDEX 3))
-] * 100.0;
T_VALUE_FRAC_PART := INTRGER(TEMP_ FLOAT) rem 100;
OU! DECIMAL ntnmmu PORT, T_VALUR_INT_PART, 2);
OU! STRING (VDU_PORT, "."):
our_nncxm_mnm (VDU_PORT, T_VALUER_FRAC PART, 2):;
end loop;
OUT_STRING (VDU_PORT, " ");
OUT_STRING (VDU_PORT, CALLING_SEQUENCE (INDEX 1, INDEX_ 2)):
NEW_LINE (VDU_PORT);
end loop:
end loop;
end CAL2 SD;

package body T _ROUTINR is

™ procedure PROC(ARG: in out INTEGER) is
begin
ARG := 42;
end PROC;

end T_ROUTINE;

CMU/SEI-87-TR-21 23

S LHINAN "'s"\"-.""\‘;\"\'\."s":‘."'\"\.(\"'v
» . N N . ! [} +

PR PR E
STy

B ey QgL AV, At cato AP AL R Rl Pl ool Sal vl Vol Yo Faq .8 2 Ve Vo OB Vo4 0.0 0 AW o RWREwYY ¥ S VERE N T UW WURN Y W, vV v w T’

Y

4]
.
]
s
b
t -—
P
‘
-
LY
]
-
»
" o
-
¥
Y
n
‘)
i kS
P~

‘
"
%
Al
Y -
.'
¢
:
K
-
24 CMU/SEI-87-TR-21 -

Ve o g aa Ta G A Cu Ty " N 1.--,1,.--1-.---.'-,--
A N A A A NV A A P ar M A G I Ty,

UNLIMLTED, IINCLASSIFIED -A ?
SECURITY CLASSIFICATION OF THIS PAGE /) '

REPORT DOCUMENTATION PAGE
te. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
® UNCLASSIFIED NONE
26 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A APPROVED FOR PUBLIC RELEASE
2b. DECLASSIFICATION/OOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A
4. PEAFORMING ORGANIZATION REPOAT NUMBEA(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
® CMU/SEI-87-TR-21 ESD-TR-87-172
6s NAME OF PERFORMING ORGANIZATION Bb. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION
(1f applicable)
OFTWAR ENGINEERIN N [SEL jlil JOINT PROGRAM OFFICE
6c. ADORESS (City, State and ZIP Code) 7. ADDRESS (City. State and ZIP Code)
CARNEGIE MELLON UNIVERSITY ESD/XRS1
| PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731
8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL [9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003
,C 8¢c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
OAK UNIT
; CARNEGIE MELLON UNIVERSITY E:::::::OA PﬂﬁgcT T:(s)x w :ou 1
SOFTWARE ENGINEERING INSTITUTE JPO
RLURGH A_15213 N/A N/A N/A
11. TITLE (inciude b«'unty Classification)
ML ARLA ON N DUA Q0P RENCHMARK
12. PERSONAL AUTHORI(S)
° A A MAN A QN DERMAN
136 TYPE OF REPORT [130. TIME COVERED 14. DATE OF REPORT (Yr, Mo., Day/ 1S PAGE COUNT
‘ FINAL | FROM T0 OCTOBER 1987 26
’ 16. SUPPLEMENTARY NOTATION
1' 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse f necessary and identify by block number
FIELO | GROUP Sue. GA. ADA, BENCHMARKS, TEST PROGRAMS, DUAL LOOP BENCHMARKS,
TIMING
19. ABSTRACT (Continue on reverse :f necessary and identify by block number;
. BENCHMARKS THAT MEASURE TIME VALUES USING A STANDARD SYSTEM CLOCK OFTEN EMPLOY
A DUAL LOOP DESIGN. ONE OF THE IMPORTANT ASSUMPTIONS OF THIS DESIGN IS THT TEXTUALLY
IDENTICAL LOOP STATEMENTS WILL TAKE THE SAME AMOUNT OF TIME TO EXECUTE. THIS ASSUMPTION
HAS BEEN TESTED ON TWO BARE COMPUTERS WITH ADA TEST PROGRAMS AND HAS BEEN DEMONSTRATED
TO BE INACCURATE IN THESE SPECIFIC TEST CASES.
<
Y
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
uNCLASSIFIED/UNLIMITED XX same as reT O oTic users XX UNCLASSIFIED, UNLIMITED
22s. NAME OF RESPONSIBLE INOIVIOUAL 226 TELEPHONE NUMBER 22c¢ OFFICE SYMBOL
KARL SHINGLER (412> 268-7630 SEI JPO
Y N

DO FORM 1473, 83 APR €DITION OF 1 JAN 73 1S OBSOLETE. UNLIMITED, UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

L el e B A AN A

e AT AT
\'f..\- W '\-

o n, N

-« "
AN

\“\ e T at e T et NS
aO%) \‘ _A'l..“ ‘\.'hx\.& "y ‘l\\‘L\.L'n\\-\\-!‘K\ .“\\L‘ "(-J)

- AN YR Y YT AR NR WYY L IESTAY A e S

A

{\L“ﬁ((u.."n_ :}:" 'b} \‘ \ '-}};ﬂ»\;\:.'\' .'J.',A .j"l fad ;J

